خلیلی شمس الدین ابوعبدالله محمدبن محمد

معرف

اخترشناس سده هشتم
متن
خلیلی، شمس‌الدین ابوعبداللّه محمدبن محمد، اخترشناس سده هشتم. براساس آثار خودش، او مؤذن مسجد اُموی و مُوَقِّت مسجد سیفیِ دمشق بود، که در 784 به فرمان الظاهر سیف‌الدین برقوق*، از حکمرانان ممالیک، بنا گردید (خلیلی ، موضع‌الاوقات ، ص 143؛ همو، کتاب جدول فضل‌الدایر و اعمال، گ 1ر). باتوجه به نسب خلیلی، شاید زادگاه او شهر الخلیل* در فلسطین بوده باشد (رجوع کنید به سارتون ،ج 3، بخش 2، ص 1527). از زندگی وی آگاهی چندانی در دست نیست. تنها می‌دانیم که با ابن‌شاطر*، اخترشناس و موقّت معروف دمشقی (متوفی 777)، و شمس‌الدین مِزّی*، اخترشناس سده هشتم که بیشتر در ساخت ابزارهای نجومی شهرت دارد، هم‌دوره بوده‌است (رجوع کنید به زندگینامه علمی دانشوران ، ذیل مادّه). همچنین، احتمال دارد که شرف‌الدین ابوعمران موسی‌بن محمد خلیلی، اخترشناس و موقّت مسجد اموی در سده هشتم و نهم، فرزند وی باشد (رجوع کنید به سوتر ،ص 173؛ روزنفلد و احسان‌اوغلو ، ص 268).آثار به‌جامانده از خلیلی به دو دسته کلی تقسیم می‌شود : 1) مهم‌ترین آنها جدولهایی است که در محاسبه توابع هیئت و به خصوص در زمینه علم میقات به‌کار می‌رفته است. علم میقات، دانشِ زمان‌سنجی بر مبنای موضع خورشید و ستارگان بوده، که بیشتر در تعیین اوقات شرعی کاربرد داشته‌است (برای آگاهی بیشتر در این باره رجوع کنید به میقات*، علم). این جدولها شامل توابع مثلثاتی (توابع کمکی) است که بیشتر برای عرض دمشق محاسبه شده و اغلب شامل روشهایی است برای استخراج مقادیر مختلف زمان‌سنجی براساس توابع مذکور (رجوع کنید به ادامه مقاله، بخشهای الف، ب، ج، ه ، و). برخی از این جدولها (رجوع کنید به بخش ه ، و) مشابه جدولهایی است که، ابن‌یونس (منجم مصری سده چهارم) به‌کار می‌برد و بعدها، ابن‌شاطر مقادیر این توابع را برای عرض دمشق محاسبه کرد. مزّی نیز جداولی را برای تعیین زاویه ساعتی و جهت قبله طراحی کرده بود ولی به‌تدریج جداول خلیلی جایگزین آنها شد. این جدولها مدتها در استانبول، قاهره و دمشق به‌کار می‌رفتند. محمدبن مصطفی طنطاوی، موقّتِ دمشقیِ سده چهاردهم، از آخرین افرادی است که از این جدولها استفاده کرده است (زندگینامه علمی دانشوران، همانجا). استفاده از توابع کمکی در محاسبات زمان‌سنجی در آثار اخترشناسانِ پیش از خلیلی، چون خوارزمی، حبش حاسب، ابونصر عراق و ابن‌یونس، نیز سابقه داشته‌است؛ هرچند خلیلی به هیچ‌یک ازاین آثار اشاره نکرده‌است و در آثار او نیز نوآوریهایی در این زمینه دیده می‌شود (برای بررسی سیر تاریخی علم میقات پیش از خلیلی رجوع کنید به کینگ ، )شمس‌الدین خلیلی و اوج دانش زمان‌سنجی اسلامی( ، ص 34ـ35).2) دسته دیگر شامل آثاری است در زمینه قبله‌یابی (رجوع کنید به بخش د)، جدولهایی در تعیین زمان رؤیت هلال (رجوع کنید به بخش ح) و رساله‌هایی در استفاده از ابزار نجومی رُبع.آثار خلیلی به شرح زیر است: الف) موضع‌الاوقات فی الاقالیم‌المقسَّمات/ المقسومات، مجموعه جدولهای کمکی برای یافتن مقادیر زاویه ساعتی خورشید. مقادیر داده‌شده تابع متغیرهای ارتفاع و طول دایرة‌البروجی خورشید، و عرض جغرافیایی ناظر است (برای آگاهی از تک‌نگاشته این اثر رجوع کنید به آربری ، ج 5، ص 29؛ برای تحلیل اثر و برگردانِ انگلیسی برخی قسمتهای آن رجوع کنید به کینگ، )شمس‌الدین خلیلی...(، ص 56ـ57؛ خلیلی، موضع الاوقات، ص 143ـ146).ب) جدولهایی برای یافتن سمت خورشید برپایه ارتفاع آن و عرض جغرافیایی ناظر، با استفاده از توابع کمکی برای افق دلخواه (برای آگاهی از تک‌نسخه این اثر رجوع کنید به )دایرة‌المعارف زندگینامه اخترشناسان( ، ذیل مادّه).ج) الجدول الآفاقی، رساله‌ای با مقدمه، پنج باب در ابتدا، خاتمه، دو باب دیگر پس از خاتمه و جداول متعدد، که مهم‌ترین اثر خلیلی به‌شمار می‌رود. خلیلی در این رساله به حل مسائل زمان‌سنجی برای افق دلخواه پرداخته است. وی در مقدمه این رساله (گ 61پ) از دو اثر پیشین خود نام برده و الجدول الآفاقی را از لحاظ موضوع عام‌تر و از نظر روش ساده‌تر از آن دو دانسته است. در این رساله، روش محاسبه مقادیر توابعی چون اندازه نیم‌کمان روزانه و شبانه خورشید و دیگر کواکب، فضل دایر (زاویه ساعتی)، سِعَت مشرق، میل با فرض معلوم‌بودن عرض و محاسبه بُعد و مطالع کواکب توضیح داده شده‌است (آلوارت ، ج 5، ص 207؛ کینگ، 1981ـ1986، ج 2،بخش 1، ص 221ـ222). خلیلی در این رساله براساس سه تابع کمکی که آنها را «محفوظ اول»، «محفوظ ثانی» و «جیب ترتیب» نامیده، توابع هیئت نام‌برده را محاسبه کرده‌است. توابع کمکی مذکور در حقیقت ضرایبی است که برای تبدیل کمانهای مثلثاتی به یکدیگر به‌کار می‌رود (برای تحلیل جدولها و توابع کمکی مذکور رجوع کنید به کینگ، 1973، ص 99ـ107؛ نیز رجوع کنید به زندگینامه علمی دانشوران، همانجا).د) فی سَمْت‌القبلة. خلیلی در این رساله به تحلیل چندین روش برای یافتن جهت قبله پرداخته است: 1. روش ابوعلی مراکشی (متوفی ح 660) در باب شصت و هفتم اثرش رسالة‌الجیب (رجوع کنید به خلیلی، فی سمت القبلة، گ 52پ)، که در آن از یافتن جهت هر مکانی بر مبنای متغیرهای طول و عرض جغرافیایی آن مکان و طول جغرافیایی ناظر بحث شده است. خلیلی این روش را بسیار ستوده و آن را دقیق‌ترین روش در این زمینه دانسته‌است (برای تحلیل این روش رجوع کنید به کینگ، 1975، ص 99ـ105؛ نیز رجوع کنید به مراکشی، ج 2، ص 179ـ180). 2. روش مراکشی با استفاده از ابزار نجومی رُبعِ مُجیّب، با وجود «مُریü» و بدون وجود آن. خلیلی به ساختار ربعی که استفاده نموده اشاره‌ای نکرده و تنها جدول نتایج را آورده است (برای تحلیل روش مراکشی و توابع به‌کار رفته در جدول رجوع کنید به کینگ، 1975، ص 118ـ120؛ همو، )شمس‌الدین خلیلی...(، ص 85ـ87). 3. استفاده از جداولی که خود آنها را تنظیم نموده‌است. همانند موارد پیشین، خلیلی از رابطه‌ای که برای تنظیم جدول به‌کار برده سخنی به میان نیاورده و تنها نتایج محاسباتش را ثبت کرده‌است. تحلیل این جدولها با رابطه دقیق محاسبه سمت قبله نشان می‌دهد که دقتِ مقادیر داده‌شده چشمگیر است و خطای آنها عمومآ در حد یک تا دو دقیقه قوسی است (رجوع کنید به همو، 1975، ص 87ـ94). هرچند تحلیل جدولها نشان می‌دهد که احتمالا این مقادیر با استفاده از جدولهای کمکی (و نه براساس محاسبات مستقل) به دست آمده یا برخی از مقادیر محاسبه شده و بقیه با روش برون‌یابی به‌دست آمده‌اند (رجوع کنید به همان، ص 98ـ99؛ فان بروملن و باتلر ، ص 47؛ برای نسخ باقیمانده از این اثر رجوع کنید به آلوارت، ج 5، ص 207؛ سلان ، ص460). به این جدولها، با وجود دقت زیادشان، دانشمندان بعدی در قلمرو اسلامی توجه نکردند ()رجوع کنید به دایرة‌المعارف زندگینامه اخترشناسان(، همانجا).ه ) اعمال مواقیت النهار و اللیل لِعَرضِ لج ل و هی دمشق، که در برخی نسخ به‌صورت جدول عمل اللیل و النهار لعرض دمشق (کینگ، 1981ـ1986، ج 1، ص 354) نیز آمده است. در این جداول، مقادیر دوازده تابع هیئت، به ازای هر درجه دایرة‌البروجی، برای عرض دمشق ذکر شده‌است. برخی از این توابع که کاربردهای مختلفی در دانش زمان‌سنجی، به ویژه در مسائل شرعی چون تعیین اوقات نماز دارند، عبارت‌اند از: ارتفاع نصف‌النهاری خورشید، اندازه نیم‌کمان روزانه و ارتفاع خورشید هنگام عصر، زمان بین عصر و غروب خورشید (رجوع کنید به خلیلی، اعمال مواقیت، گ 10ر، برای تحلیل این جدولها در نسخه‌های مختلف رجوع کنید به کینگ، )شمس‌الدین خلیلی...(، ص 65ـ69).و) جدول فضل‌الدائر لعرض دمشق، که در آن مقدار تابع زاویه ساعتی خورشید به ازای دو متغیر ارتفاع و طول دایرة‌البروجی آن برای عرض دمشق آمده‌است. از این جدولها برای حل مسائل زمان‌سنجی بر مبنای موضع خورشید استفاده می‌شده‌است. چنان‌که تحلیل این داده‌ها نشان می‌دهد، ممکن است آنها با استفاده از جدولهای کمکیِ رساله موضع الاوقات فی الاقالیم المُقسَّمات محاسبه شده باشند. نسخ مختلفی از این اثر به‌جا مانده است که در برخی از آنها جدولهایی از شخص دیگری به نام حلبی افزوده شده است (رجوع کنید به کینگ، )شمس‌الدین خلیلی...(، ص70؛ نیز رجوع کنید به روزنفلد و احسان‌اوغلو، ص 258؛ سلان، همانجا).ز) فائدة فی خطّالظلّ الذی فی محل الاذان فی مأذنة العروس بجامع الاموی بدمشق، درباره برخی از کاربردهای شاخص آفتابیِ منصوب در مناره مسجد اموی (رجوع کنید به روزنفلد و احسان‌اوغلو، همانجا). ژانن (ص 285ـ298) در مقاله‌ای ساختار این شاخص را تحلیل کرده‌است.ح) جدولهایی برای تبدیل مختصات دایرة‌البروجی ماه به مختصات استوایی آن. از این اثر خلیلی نسخه‌ای باقی نمانده و تنها عزالدین وفایی (موقِّت سده نهم) در خلاصة‌الدرر فی العمل بالقمر به آن اشاره کرده‌است. یکی از کاربردهای این جدول استفاده از آن در تعیین زمان دیده‌شدن هلال بوده است (رجوع کنید به کینگ، )شمس‌الدین خلیلی...(، ص 88ـ89).همچنین از خلیلی چندین رساله درباره روشهای مختلف استفاده از رُبع برجای مانده‌است: 1) رسالة فی العمل بالمُربّع، 2) رسالة فی العمل بالجیب الغائب (رجوع کنید به بروکلمان ، )ذیل(، ج 2، ص 157)، 3) النجوم الزاهرة فی الجیب بِغَیر مُریü و لادائرة، رساله‌ای مختصر در 25 باب (رجوع کنید به حاجی‌خلیفه، ج 2، ستون 1932). اشتاین اشنایدر (ص 575ـ576)، بدون ذکر نام،نوشته است که یکی از سه رساله فوق را موسی‌بن یهودا به عبری برگردانده‌است (نیز رجوع کنید به سارتون، ج 3، بخش 2، ص 1526؛ برای بررسی ساختار انواع ربعهای رایج در دوره اسلامی رجوع کنید به رُبع*).منابع : حاجی‌خلیفه؛ محمدبن محمد خلیلی، اعمال مواقیت النهار و اللیل لعرض لج ل و هی دمشق، درDavid Anthony King, Shams al-Din al-Khalili and the culmination of the Islamic science of astronomical timekeeping (The winner of TWAS 1987 history of science prize, unpublished);همو، الجدول الآفاقی، در همان؛ همو، فی سمت القبلة، در همان؛ همو، کتاب جدول فضل‌الدایر و اعمال، در همان؛ دیوید آنتونی کینگ، فهرس المخطوطات العلمیة المحفوظة بدارالکتب المصریة، قاهره 1981ـ1986؛ حسن‌بن علی مراکشی، جامع‌المبادئ و الغایات فی علم المیقات، چاپ عکسی از نسخه خطی کتابخانه طوپقاپی‌سرای استانبول، مجموعه احمد ثالث، ش 3343، فرانکفورت 1405/1984؛W. Ahlwardt, Verzeichniss der arabischen Handschriften der k(niglichen Bibliothek zu Berlin, Berlin 1887-1899; Arthur John Arberry, The Chester Beatty Library: a handlist of the Arabic manuscripts, Dublin 1955- 1966; The Biographical encyclopedia of astronomers, ed. Thomas Hockey, NewYork: Springer, 2007, s.v. "Khal((l((: abu(( Abdalla(h Muh(ammad ibn Muh(ammad al-D((n Shams al-Khal((l((" (by David A. King); Carl Brockelmann, 1943-1949, Geschichte der arabischen Litteratur, Leiden 1937-1942; Dictionary of scientific Supplementband, biography, ed. Charles Coulston Gillispie, New York: Charles Scribner's Sons, 1981, s.v. "Al-Khal((l((, Shams al-D((n Abu(( Abdalla(h Muh(ammad ibn Muh(ammad" (by David A. King); Louis Janin, "Le cadran solaire dela mosqu(e Umayyade ( Damas", Centaurus, vol.16, no.4 Muhammad ibn Muhammad Khalili, Mawd(i 1972); (Dec. (al-awqa(t fi'l-aqa(li(m al-muqassama(t, tr. David Anthony King, in David Anthony King, ibid; David Anthony King, "Al-Khal((l(('s auxiliary tables for solving problems of spherical astronomy", Journal for the history of astronomy, vol.4, pt.1, no.9 (Feb. 1973); idem, "Al-Khal((l(('s Qibla table", Journal of Near Eastern studies, vol.34, no.2 (Apr. 1975); idem, Shams al-Din al-Khalili and the culmination , ibid; of the Islamic science of astronomical timekeeping Rozenfeld and Ekmeleddin I(hsanog(lu, Abramovich Boris Mathematicians, astronomers, and other scholars of Islamic civilization and their works (7th-19th c.), I(stanbul 2003; George Sarton, Introduction to the history of science, Malabar, Fla. 1975; Mac Guckin de Slane, Catalogue des manuscrits arabes, Paris 1883-1895; Moritz Steinschneider, Die hebr(ischen (ebersetzungen des Mittelalters und die Juden als Dolmetscher, Berlin 1893; Heinrich Suter, Die Mathematiker und Astronomen der Araber und ihre Werke, Leipzig 1900, repr. Amsterdam 1981; Glen Van Brummelen and Kenneth Butler, "Determining the interdependence of historical astronomical tables", Journal of the American Statistical Association, no.437 (Mar. 1997).
نظر شما
مولفان
گروه
رده موضوعی
جلد 16
تاریخ 93
وضعیت چاپ
  • چاپ شده